MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Reproducibility of Surface Wind and Tracer Transport Simulations over Complex Terrain Using 5-, 3-, and 1-km-Grid Models
Reproducibility of Surface Wind and Tracer Transport Simulations over Complex Terrain Using 5-, 3-, and 1-km-Grid Models
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Reproducibility of Surface Wind and Tracer Transport Simulations over Complex Terrain Using 5-, 3-, and 1-km-Grid Models
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Reproducibility of Surface Wind and Tracer Transport Simulations over Complex Terrain Using 5-, 3-, and 1-km-Grid Models
Reproducibility of Surface Wind and Tracer Transport Simulations over Complex Terrain Using 5-, 3-, and 1-km-Grid Models

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Reproducibility of Surface Wind and Tracer Transport Simulations over Complex Terrain Using 5-, 3-, and 1-km-Grid Models
Reproducibility of Surface Wind and Tracer Transport Simulations over Complex Terrain Using 5-, 3-, and 1-km-Grid Models
Journal Article

Reproducibility of Surface Wind and Tracer Transport Simulations over Complex Terrain Using 5-, 3-, and 1-km-Grid Models

2020
Request Book From Autostore and Choose the Collection Method
Overview
The reproducibility of surface wind and tracer transport simulations from high-resolution weather and transport models was studied over complex terrain in wintertime in Japan. The horizontal grid spacing was varied (5-, 3-, and 1-km grids), and radioactive cesium (Cs-137) from the Fukushima nuclear power plant was used as a tracer. Fukushima has complex terrain, such as mountains and valleys. The model results were validated by observations collected from the national networks of the automated meteorological data acquisition system and the hourly air pollution sampling system. The reproducibility depended on the model resolution, topographic complexity, and synoptic weather conditions. Higher model resolution led to higher reproducibility of surface winds, especially in mountainous areas when the Siberian winter monsoon was disturbed. In contrast, the model improvement was negligible or nonexistent over plain/coastal areas when the synoptic field was steady. The statistical scores of the tracer transport simulations often deteriorated as a result of small errors in the plume locations. However, the higher-resolution models advantageously performed better transport simulations in the mountainous areas because of the lower numerical diffusion and higher reproducibility of the mass flux. The reproducibility of the tracer distribution in the valley of the Fukushima mountainous region was dramatically improved with increasing model resolution. In the range of mesoscale model resolutions (commonly 1–10 km), it was concluded that a higher-resolution model is definitely recommended for tracer transport simulations over mountainous terrain.