MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Microbial growth within porous gravity currents
Microbial growth within porous gravity currents
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Microbial growth within porous gravity currents
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Microbial growth within porous gravity currents
Microbial growth within porous gravity currents

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Microbial growth within porous gravity currents
Microbial growth within porous gravity currents
Journal Article

Microbial growth within porous gravity currents

2024
Request Book From Autostore and Choose the Collection Method
Overview
The effect of microbial activity on buoyancy-driven flow within a porous layer is analysed. The input fluid provides an energy source for the growth of biofilms on the porous rock. At each location within the porous layer, the porosity and permeability begin to decrease once the input fluid has invaded. This leads to an evolving rock heterogeneity that depends on the passing time of the input fluid. Hence, the evolution of the flow is partly controlled by its own history. We present an axisymmetric gravity current model, accounting for this effect. In general, a reduction in permeability leads to the flow having a lesser extent in the radial direction and greater thickness (extent in the cross-flow direction), whilst a reduction in porosity has negligible effect on the thickness but leads to a much greater radial extent. The flow is fastest near the free surface where the permeability is greatest. In the case where the porosity and permeability reduce as power-law functions of fluid residence time, the evolution of the flow and the rock properties are self-similar. Consumption of the input fluid by the microbes is also incorporated in the model and it generally leads to flows with lesser radial extent but little change in the thickness. The three impacts of microbial growth (volume loss owing to consumption and the reduction in permeability and porosity) each influence the flow in substantially different ways and the interplay is analysed. A motivation of the study, the underground storage of hydrogen, is briefly discussed.