Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Robust estimation of mean squared prediction error in small-area estimation
by
WU, Ping
, JIANG, Jiming
in
Best linear unbiased prediction
/ Bias
/ Empirical analysis
/ Errors
/ Estimating techniques
/ Estimation
/ Estimation bias
/ jackknife
/ mean‐squared prediction error
/ moment‐matching bootstrap
/ nested‐error regression
/ Predictions
/ Random effects
/ Regression analysis
/ Regression models
/ Uncertainty
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Robust estimation of mean squared prediction error in small-area estimation
by
WU, Ping
, JIANG, Jiming
in
Best linear unbiased prediction
/ Bias
/ Empirical analysis
/ Errors
/ Estimating techniques
/ Estimation
/ Estimation bias
/ jackknife
/ mean‐squared prediction error
/ moment‐matching bootstrap
/ nested‐error regression
/ Predictions
/ Random effects
/ Regression analysis
/ Regression models
/ Uncertainty
2021
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Robust estimation of mean squared prediction error in small-area estimation
by
WU, Ping
, JIANG, Jiming
in
Best linear unbiased prediction
/ Bias
/ Empirical analysis
/ Errors
/ Estimating techniques
/ Estimation
/ Estimation bias
/ jackknife
/ mean‐squared prediction error
/ moment‐matching bootstrap
/ nested‐error regression
/ Predictions
/ Random effects
/ Regression analysis
/ Regression models
/ Uncertainty
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Robust estimation of mean squared prediction error in small-area estimation
Journal Article
Robust estimation of mean squared prediction error in small-area estimation
2021
Request Book From Autostore
and Choose the Collection Method
Overview
The nested-error regression model is one of the best-known models in small area estimation. A small area mean is often expressed as a linear combination of fixed effects and realized values of random effects. In such analyses, prediction is made by borrowing strength from other related areas or sources and mean-squared prediction error (MSPE) is often used as a measure of uncertainty. In this article, we propose a bias-corrected analytical estimation of MSPE as well as a moment-match jackknife method to estimate the MSPE without specific assumptions about the distributions of the data. Theoretical and empirical studies are carried out to investigate performance of the proposed methods with comparison to existing procedures.
Le modèle de régression à erreur imbriquée est l’un des mieux connus pour l’estimation sur des petits domaines. La moyenne d’un petit domaine est souvent exprimée comme une combinaison linéaire d’effets fixes et de valeurs réalisées d’effets aléatoires. Pour de telles analyses, les prévisions sont effectuées en empruntant de l’information d’autres domaines associés ou d’autres sources, et l’erreur quadratique moyenne de prévision (EQMP) sert souvent à mesurer l’incertitude. Les auteurs proposent une estimation analytique de l’EQMP corrigée pour le biais ainsi qu’une méthode jackknife d’appariement des moments afin d’estimer l’EQMP sans formuler d’hypothèses spécifiques sur la distribution des données. Ils présentent des études théoriques et empiriques comparant la performance des méthodes proposées aux procédures existantes.
Publisher
Wiley,John Wiley & Sons, Inc,Wiley Subscription Services, Inc
This website uses cookies to ensure you get the best experience on our website.