MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Effect of Impact Angles and Temperatures on the Solid Particle Erosion Behavior of HVOF Sprayed WC-Co/NiCr/Mo and Cr3C2-CoNiCrAlY Coatings
Effect of Impact Angles and Temperatures on the Solid Particle Erosion Behavior of HVOF Sprayed WC-Co/NiCr/Mo and Cr3C2-CoNiCrAlY Coatings
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Effect of Impact Angles and Temperatures on the Solid Particle Erosion Behavior of HVOF Sprayed WC-Co/NiCr/Mo and Cr3C2-CoNiCrAlY Coatings
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Effect of Impact Angles and Temperatures on the Solid Particle Erosion Behavior of HVOF Sprayed WC-Co/NiCr/Mo and Cr3C2-CoNiCrAlY Coatings
Effect of Impact Angles and Temperatures on the Solid Particle Erosion Behavior of HVOF Sprayed WC-Co/NiCr/Mo and Cr3C2-CoNiCrAlY Coatings

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Effect of Impact Angles and Temperatures on the Solid Particle Erosion Behavior of HVOF Sprayed WC-Co/NiCr/Mo and Cr3C2-CoNiCrAlY Coatings
Effect of Impact Angles and Temperatures on the Solid Particle Erosion Behavior of HVOF Sprayed WC-Co/NiCr/Mo and Cr3C2-CoNiCrAlY Coatings
Journal Article

Effect of Impact Angles and Temperatures on the Solid Particle Erosion Behavior of HVOF Sprayed WC-Co/NiCr/Mo and Cr3C2-CoNiCrAlY Coatings

2023
Request Book From Autostore and Choose the Collection Method
Overview
Extreme erosion wear from elevated temperature caused by the impact of entrained solid particles in the fluid stream primarily affects aerospace components and marine parts. This work focuses on increasing the base material erosion resistance by applying thermally sprayed carbide-based coatings. A high-temperature Solid particle erosion behavior of WC-Co/NiCr/Mo and Cr 3 C 2 -CoNiCrAlY coatings deposited by the HVOF process on a titanium-31 was evaluated using an air-jet erosion tester. The erosion test was conducted utilizing alumina erodent of grit size 35-50 µm. The effects of impact angles (30°, 60°, and 90°) and temperatures (200-800 °C) on the erosion performance of two coatings are compared. The feedstock powder and as-sprayed coatings were characterized for micro-structure phase composition, porosity, density, micro-hardness, and adhesion strength. SEM/EDS and a 3D optical profilometer were used to examine eroded samples further to determine the erosion mode. The Cr 3 C 2 -CoNiCrAlY coating shows a brittle mode behavior of erosion at 200-400 °C and ductile mode behavior of erosion at 600-800 °C. In contrast, the WC-Co/NiCr/Mo coating shows brittle mode behavior of erosion at 200-400 °C and 600-800 °C, a mixed mode behavior of erosion. The erosion loss in volume of Cr 3 C 2 -CoNiCrAlY is lower than WC-Co/NiCr/Mo for all temperatures and impact angles. The development of carbide and oxide phases on the eroded surfaces demonstrates increasing erosion resistance at high temperatures. The optical profilometer measures the volumetric erosion loss, compares it with the weight loss method, and finds consistency between them.

MBRLCatalogueRelatedBooks