MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material
Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material
Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material
Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material
Journal Article

Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material

2017
Request Book From Autostore and Choose the Collection Method
Overview
Purpose Biochar has long been proposed for amending agricultural soils to increase soil-water retention capacity and therefore promotes crop growth. Recent studies revealed the potential use of biochar-amended soil in landfill final covers to promote methane oxidation and odor reduction. However, the effects of biochar application ratio, compaction water content (CWC), and degree of compaction (DOC) on soil-water retention characteristics of biochar-amended clay (BAC) at high soil suction (dry condition) are not well understood. The present study aims to overcome this knowledge gap. Materials and methods Soil suction was induced using vapor equilibrium technique by a temperature- and humidity-controlled chamber, and the water desorption (drying) and adsorption (wetting) water retention curves (WRCs) of compacted pure kaolin clay and peanut shell BAC with different biochar application ratios (0, 5, and 20 %, w / w ), DOCs (80, 90, and 100 %), and CWCs (30 and 35 %) were measured. The correlations between these factors and the gravimetric water content were analyzed by three-way ANOVA followed by the Tukey HSD test. The soil micro-structure was studied by scanning electronic microscope with energy-dispersive X-ray spectroscopy. Results and discussion Measured WRCs of BAC suggest that the soil-water retention capacity at high suction range (48.49–124.56 MPa) was in general increased, upon biochar application. The BAC compacted with CWC of 35 % at low (80 %) and high (100 %) DOCs for the 5 % BAC were increased by 7.30 and 9.77 %, when compared with clay, while the increases of 20 % BAC were 39.89 and 59.20 %, respectively. This is attributed to the embedded effects of clay particles in biochar pores, which reduce the total pore space of BAC. The soil-water retention capacity of BAC was also increased with CWC and decreased with DOC. The results of three-way ANOVA analysis show that the effects of DOC and biochar ratio on soil gravimetric water content was significant ( p  < 0.05) only at 48.49 MPa on drying path. For other induced suctions, only effects of CWC were significant ( p  < 0.05). Conclusions Biochar application increases soil-water retention capacity of the BAC at high soil suction (48.49–124.56 MPa) (dry condition) at both low (80 %) and high DOC (100 %). The soil-water retention capacity of 20 % BAC was much higher than that of 5 % BAC. BAC is a potential alternative landfill final cover soil with a higher soil-water retention capacity to be used in dry areas or regions with a long period of evaporation event.