MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Monitoring and Sampling Platform for Air Pollutants on a Rotary-Wing Unmanned Aerial Vehicle: Development and Application
A Monitoring and Sampling Platform for Air Pollutants on a Rotary-Wing Unmanned Aerial Vehicle: Development and Application
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Monitoring and Sampling Platform for Air Pollutants on a Rotary-Wing Unmanned Aerial Vehicle: Development and Application
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Monitoring and Sampling Platform for Air Pollutants on a Rotary-Wing Unmanned Aerial Vehicle: Development and Application
A Monitoring and Sampling Platform for Air Pollutants on a Rotary-Wing Unmanned Aerial Vehicle: Development and Application

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Monitoring and Sampling Platform for Air Pollutants on a Rotary-Wing Unmanned Aerial Vehicle: Development and Application
A Monitoring and Sampling Platform for Air Pollutants on a Rotary-Wing Unmanned Aerial Vehicle: Development and Application
Journal Article

A Monitoring and Sampling Platform for Air Pollutants on a Rotary-Wing Unmanned Aerial Vehicle: Development and Application

2025
Request Book From Autostore and Choose the Collection Method
Overview
Complex air pollution, including particulate matter and ozone, is a significant environmental issue in China, with volatile organic compounds (VOCs) as key precursors. Traditional ground-based monitoring methods struggle to capture the vertical distribution and changes of pollutants in the troposphere. To address this, we developed a vertical monitoring and sampling platform using a quadcopter unmanned aerial vehicle (UAV). The platform, equipped with lightweight quartz sampling canisters and miniaturized sensors, collects air samples for VOC analysis and vertical data on meteorological parameters and particulate matter. Performance tests showed the quartz canisters had less than 15% adsorption loss, with sample storage stability exceeding 80% over three days. Sensor data showed strong correlations with standard instruments (R2 > 0.80). Computational fluid dynamics simulations optimized the sampler’s inlet position and ascertained that ascending flight mitigates rotor-induced air recirculation. Field campaigns were conducted at six sites along the Chengdu Metropolitan Circle Ring Expressway. Vertical data from 0~300 m revealed particulate matter concentrations peaked at 50~70 m. Near-surface VOCs were dominated by alkanes, while aromatics were found concentrated at 150~250 m, indicating significant regional transport influences. The results confirmed the platform’s effectiveness for pollutant distribution analysis.