MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Estimating Forest Aboveground Biomass Using a Combination of Geographical Random Forest and Empirical Bayesian Kriging Models
Estimating Forest Aboveground Biomass Using a Combination of Geographical Random Forest and Empirical Bayesian Kriging Models
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Estimating Forest Aboveground Biomass Using a Combination of Geographical Random Forest and Empirical Bayesian Kriging Models
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Estimating Forest Aboveground Biomass Using a Combination of Geographical Random Forest and Empirical Bayesian Kriging Models
Estimating Forest Aboveground Biomass Using a Combination of Geographical Random Forest and Empirical Bayesian Kriging Models

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Estimating Forest Aboveground Biomass Using a Combination of Geographical Random Forest and Empirical Bayesian Kriging Models
Estimating Forest Aboveground Biomass Using a Combination of Geographical Random Forest and Empirical Bayesian Kriging Models
Journal Article

Estimating Forest Aboveground Biomass Using a Combination of Geographical Random Forest and Empirical Bayesian Kriging Models

2024
Request Book From Autostore and Choose the Collection Method
Overview
Accurately estimating forest aboveground biomass (AGB) is imperative for comprehending carbon cycling, calculating carbon budgets, and formulating sustainable forest management plans. Currently, random forest (RF) and other machine learning models are widely used to estimate forest AGB, as they can effectively handle nonlinear relationships. However, by constructing a global model using all the samples collected from a study area, these models fail to account for the spatial heterogeneity in the AGB and cannot correct the prediction biases, thereby constraining the estimation accuracy. To overcome these limitations, we proposed a novel approach termed geographical random forest and empirical Bayesian kriging (GRFEBK). This hybrid model combines the localized modeling capability of geographical random forest (GRF) with the bias correction strength of empirical Bayesian kriging (EBK). GRF adapts RF to account for the spatial heterogeneity of the AGB, while EBK utilizes the spatial autocorrelation of residuals to correct the prediction deviations. This study was conducted in Hainan Island, utilizing spectral bands, vegetation indices, tasseled cap components derived from Landsat-8 imagery, backscattering coefficients from ALOS-2 synthetic aperture radar, topographic features, and the forest canopy height as the explanatory variables. A total of 195 forest aboveground biomass (AGB) samples were collected for modeling and assessing the predictive accuracy. The results demonstrate that, among the tested models, including GRFEBK, RF, support vector machine (SVM), k-nearest neighbor (KNN), geographically weighted regression (GWR), GRF, and EBK, GRFEBK attains the highest R2 (0.78) and the lowest RMSE (36.04 Mg/ha) and RRMSE (22.87%), significantly outperforming the conventional models and using GRF or EBK alone. These results demonstrate that by accounting for local non-stationarity in AGB and correcting prediction biases, GRFEBK achieves significantly higher accuracy than conventional RF and other models. While the results are promising, the computational cost of GRFEBK and its performance under varying geographical conditions warrant further investigation at larger scales to assess its broader applicability. Nevertheless, GRFEBK provides an innovative and more reliable approach for accurate forest AGB estimation with great potential to support global forest resource monitoring.