MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Moisture and Temperature Profiles of Heartwood Pinus pinaster Ait. Wood Specimens during Microwave Drying
Moisture and Temperature Profiles of Heartwood Pinus pinaster Ait. Wood Specimens during Microwave Drying
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Moisture and Temperature Profiles of Heartwood Pinus pinaster Ait. Wood Specimens during Microwave Drying
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Moisture and Temperature Profiles of Heartwood Pinus pinaster Ait. Wood Specimens during Microwave Drying
Moisture and Temperature Profiles of Heartwood Pinus pinaster Ait. Wood Specimens during Microwave Drying

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Moisture and Temperature Profiles of Heartwood Pinus pinaster Ait. Wood Specimens during Microwave Drying
Moisture and Temperature Profiles of Heartwood Pinus pinaster Ait. Wood Specimens during Microwave Drying
Journal Article

Moisture and Temperature Profiles of Heartwood Pinus pinaster Ait. Wood Specimens during Microwave Drying

2024
Request Book From Autostore and Choose the Collection Method
Overview
Microwave (MW) drying of wood has gained popularity in the field of wood modification. The rise in temperature during MW drying leads to increased steam pressure, enhancing wood permeability but potentially decreasing mechanical properties. Understanding temperature and moisture behaviors during MW drying is crucial for its industrial application in wood drying. Therefore, this study aimed to characterize the temperature and moisture behaviors during MW drying of small Portuguese maritime pine (Pinus pinaster Aiton.) wood samples to support a wider use of this technology. The effects on water uptake and the compressive strength parallel to the grain were also investigated. The results indicated three distinct phases in the MW drying rates, with an average of 0.085% of water removed per second. Moreover, the temperature underwent three distinct stages: an initial rapid increase, a period of constant temperature, and a slight decrease until drying was complete. At the beginning of MW drying, the temperatures were below 100 °C, with average temperatures ranging from 126 to 145 °C. Specimens with lower initial moisture content had higher temperatures, and a positive correlation was found between initial moisture content and drying time. In contrast, negative correlations were found between the initial moisture content and average temperature, as well as average temperature and MW drying time. Additionally, the operating condition parameters used in MW drying of pine samples enhanced water impregnability by 65%, generating a slight reduction of 11% in compressive strength. It was also noticed that the initial moisture content did not impact MW-dried samples’ water uptake or compressive strength. Finally, although small clear wood samples of maritime pine were utilized, the temperature and moisture patterns observed closely matched real-scale specimens. Thus, the findings corroborate a wide utilization of MW technology for wood drying, mainly demonstrating positive possibilities for structural-sized wood specimens.