MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Flood Susceptibility Assessment with Random Sampling Strategy in Ensemble Learning (RF and XGBoost)
Flood Susceptibility Assessment with Random Sampling Strategy in Ensemble Learning (RF and XGBoost)
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Flood Susceptibility Assessment with Random Sampling Strategy in Ensemble Learning (RF and XGBoost)
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Flood Susceptibility Assessment with Random Sampling Strategy in Ensemble Learning (RF and XGBoost)
Flood Susceptibility Assessment with Random Sampling Strategy in Ensemble Learning (RF and XGBoost)

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Flood Susceptibility Assessment with Random Sampling Strategy in Ensemble Learning (RF and XGBoost)
Flood Susceptibility Assessment with Random Sampling Strategy in Ensemble Learning (RF and XGBoost)
Journal Article

Flood Susceptibility Assessment with Random Sampling Strategy in Ensemble Learning (RF and XGBoost)

2024
Request Book From Autostore and Choose the Collection Method
Overview
Due to the complex interaction of urban and mountainous floods, assessing flood susceptibility in mountainous urban areas presents a challenging task in environmental research and risk analysis. Data-driven machine learning methods can evaluate flood susceptibility in mountainous urban areas lacking essential hydrological data, utilizing remote sensing data and limited historical inundation records. In this study, two ensemble learning algorithms, Random Forest (RF) and XGBoost, were adopted to assess the flood susceptibility of Kunming, a typical mountainous urban area prone to severe flood disasters. A flood inventory was created using flood observations from 2018 to 2022. The spatial database included 10 explanatory factors, encompassing climatic, geomorphic, and anthropogenic factors. Artificial Neural Network (ANN) and Support Vector Machine (SVM) were selected for model comparison. To minimize the influence of expert opinions on model training, this study employed a strategy of uniformly random sampling in historically non-flooded areas for negative sample selection. The results demonstrated that (1) ensemble learning algorithms offer higher accuracy than other machine learning methods, with RF achieving the highest accuracy, evidenced by an area under the curve (AUC) of 0.87, followed by XGBoost at 0.84, surpassing both ANN (0.83) and SVM (0.82); (2) the interpretability of ensemble learning highlighted the differences in the potential distribution of the training data’s positive and negative samples. Feature importance in ensemble learning can be utilized to minimize human bias in the collection of flooded-site samples, more targeted flood susceptibility maps of the study area’s road network were obtained; and (3) ensemble learning algorithms exhibited greater stability and robustness in datasets with varied negative samples, as evidenced by their performance in F1-Score, Kappa, and AUC metrics. This paper further substantiates the superiority of ensemble learning in flood susceptibility assessment tasks from the perspectives of accuracy, interpretability, and robustness, enhances the understanding of the impact of negative samples on such assessments, and optimizes the specific process for urban flood susceptibility assessment using data-driven methods.