MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Landslide Susceptibility Assessment in Active Tectonic Areas Using Machine Learning Algorithms
Landslide Susceptibility Assessment in Active Tectonic Areas Using Machine Learning Algorithms
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Landslide Susceptibility Assessment in Active Tectonic Areas Using Machine Learning Algorithms
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Landslide Susceptibility Assessment in Active Tectonic Areas Using Machine Learning Algorithms
Landslide Susceptibility Assessment in Active Tectonic Areas Using Machine Learning Algorithms

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Landslide Susceptibility Assessment in Active Tectonic Areas Using Machine Learning Algorithms
Landslide Susceptibility Assessment in Active Tectonic Areas Using Machine Learning Algorithms
Journal Article

Landslide Susceptibility Assessment in Active Tectonic Areas Using Machine Learning Algorithms

2024
Request Book From Autostore and Choose the Collection Method
Overview
The eastern margin of the Tibetan Plateau is one of the regions with the most severe landslide disasters on a global scale. With the intensification of seismic activity around the Tibetan Plateau and the increase in extreme rainfall events, the prevention of landslide disasters in the region is facing serious challenges. This article selects the Bailong River Basin located in this region as the research area, and the historical landslide data obtained from high-precision remote sensing image interpretation combined with field validation are used as the sample library. Using machine learning algorithms and data-driven landslide susceptibility assessment as the methods, 17 commonly used models and 17 important factors affecting the development of landslides are selected to carry out the susceptibility assessment. The results show that the BaggingClassifier model shows advantageous applicability in the region, and the landslide susceptibility distribution map of the Bailong River Basin was generated using this model. The results show that the road and population density are both high in very high and high susceptible areas, indicating that there is still a significant potential landslide risk in the basin. The quantitative evaluation of the main influencing factors emphasizes that distance to a road is the most important factor. However, due to the widespread utilization of ancient landslides by local residents for settlement and agricultural cultivation over hundreds of years, the vast majority of landslides are likely to have occurred prior to human settlement. Therefore, the importance of this factor may be overestimated, and the evaluation of the factors still needs to be dynamically examined in conjunction with the development history of the region. The five factors of NDVI, altitude, faults, average annual rainfall, and rivers have a secondary impact on landslide susceptibility. The research results have important significance for the susceptibility assessment of landslides in the complex environment of human–land interaction and for the construction of landslide disaster monitoring and early warning systems in the Bailong River Basin.