MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Performance and Emissions Assessment of a Micro-Turbojet Engine Fueled with Jet A and Blends of Propanol, Butanol, Pentanol, Hexanol, Heptanol, and Octanol
Performance and Emissions Assessment of a Micro-Turbojet Engine Fueled with Jet A and Blends of Propanol, Butanol, Pentanol, Hexanol, Heptanol, and Octanol
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Performance and Emissions Assessment of a Micro-Turbojet Engine Fueled with Jet A and Blends of Propanol, Butanol, Pentanol, Hexanol, Heptanol, and Octanol
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Performance and Emissions Assessment of a Micro-Turbojet Engine Fueled with Jet A and Blends of Propanol, Butanol, Pentanol, Hexanol, Heptanol, and Octanol
Performance and Emissions Assessment of a Micro-Turbojet Engine Fueled with Jet A and Blends of Propanol, Butanol, Pentanol, Hexanol, Heptanol, and Octanol

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Performance and Emissions Assessment of a Micro-Turbojet Engine Fueled with Jet A and Blends of Propanol, Butanol, Pentanol, Hexanol, Heptanol, and Octanol
Performance and Emissions Assessment of a Micro-Turbojet Engine Fueled with Jet A and Blends of Propanol, Butanol, Pentanol, Hexanol, Heptanol, and Octanol
Journal Article

Performance and Emissions Assessment of a Micro-Turbojet Engine Fueled with Jet A and Blends of Propanol, Butanol, Pentanol, Hexanol, Heptanol, and Octanol

2025
Request Book From Autostore and Choose the Collection Method
Overview
This study examines the impact of alcohol blends on the performance and emissions of aviation micro-turbojet engines. Thus, propanol, butanol, pentanol, hexanol, heptanol, and octanol were tested at 10%, 20%, and 30% concentrations and mixed with Jet A, as well as with an additional 5% heptanol blend to preserve base fuel properties, to fuel a JetCat P80 micro-turbojet. Physicochemical properties such as density, viscosity, and elemental composition were analyzed before engine testing. Carbon dioxide (CO2) emissions from 1 kg of fuel combustion varied, with propanol yielding the lowest at 3.02 kg CO2 per kg of fuel and octanol yielding the highest at 3.22 kg CO2 per kg of fuel. The following results were obtained: alcohol blends lowered exhaust gas temperature by up to 7.5% at idle and intermediate thrust but slightly increased it at maximum power; fuel mass flow increased with alcohol concentration, peaking at 20.4% above Jet A for 30% propanol; and thrust varied from −4.92% to +7.4%. While specific fuel consumption increased by up to 12.8% for propanol, thermal efficiency declined by 1.8–5.6% and combustion efficiency remained within ±2% of Jet A. Butanol and octanol emerged as viable alternatives, balancing emissions reduction and efficiency. The results emphasize the need for an optimal trade-off between environmental impact and engine performance.