MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Discriminating single-molecule binding events from diffraction-limited fluorescence
Discriminating single-molecule binding events from diffraction-limited fluorescence
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Discriminating single-molecule binding events from diffraction-limited fluorescence
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Discriminating single-molecule binding events from diffraction-limited fluorescence
Discriminating single-molecule binding events from diffraction-limited fluorescence

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Discriminating single-molecule binding events from diffraction-limited fluorescence
Discriminating single-molecule binding events from diffraction-limited fluorescence
Journal Article

Discriminating single-molecule binding events from diffraction-limited fluorescence

2025
Request Book From Autostore and Choose the Collection Method
Overview
Single-molecule localization microscopy enables high-resolution imaging of molecular interactions, but discriminating molecular binding types has traditionally relied on complex strategies, such as multiple dyes, time-division techniques, or kinetic analysis, that are asynchronous, invasive, or time-consuming. Here, we uncover previously overlooked spatiotemporal information embedded within diffraction-limited fluorescence, enabling synchronous classification of individual binding event videos using only a single fluorescent dye. Building on this insight, we propose a Temporal-to-Context Convolutional Neural Network (T2C CNN), which integrates long-term spatial convolutions, shallow cross-connected blocks, and a pooling-free structure to enhance contextual representation while preserving fine-grained temporal features. Applied to DNA-PAINT experiments, T2C CNN achieves up to 94.76% classification accuracy and outperforms state-of-the-art video classification models by 15-25 percentage points. Our approach enables rapid and precise binding-type recognition from fluorescence video data, reducing observation time from minutes to seconds and facilitating high-throughput single-molecule imaging without requiring multiple dye channels or extended kinetic measurements. Yin and colleagues propose that diffraction-limited fluorescence videos contain hidden binding-type information. The authors present a deep learning model, T2C CNN, which exploits that hidden information to classify molecular interactions with high accuracy using a single dye in seconds.