MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Flying high: Sampling savanna vegetation with UAV‐lidar
Flying high: Sampling savanna vegetation with UAV‐lidar
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Flying high: Sampling savanna vegetation with UAV‐lidar
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Flying high: Sampling savanna vegetation with UAV‐lidar
Flying high: Sampling savanna vegetation with UAV‐lidar

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Flying high: Sampling savanna vegetation with UAV‐lidar
Flying high: Sampling savanna vegetation with UAV‐lidar
Journal Article

Flying high: Sampling savanna vegetation with UAV‐lidar

2023
Request Book From Autostore and Choose the Collection Method
Overview
The flexibility of UAV‐lidar remote sensing offers a myriad of new opportunities for savanna ecology, enabling researchers to measure vegetation structure at a variety of temporal and spatial scales. However, this flexibility also increases the number of customizable variables, such as flight altitude, pattern, and sensor parameters, that, when adjusted, can impact data quality as well as the applicability of a dataset to a specific research interest. To better understand the impacts that UAV flight patterns and sensor parameters have on vegetation metrics, we compared 7 lidar point clouds collected with a Riegl VUX − 1LR over a 300 × 300 m area in the Kruger National Park, South Africa. We varied the altitude (60 m above ground, 100 m, 180 m, and 300 m) and sampling pattern (slowing the flight speed, increasing the overlap between flightlines and flying a crosshatch pattern), and compared a variety of vertical vegetation metrics related to height and fractional cover. Comparing vegetation metrics from acquisitions with different flight patterns and sensor parameters, we found that both flight altitude and pattern had significant impacts on derived structure metrics, with variation in altitude causing the largest impacts. Flying higher resulted in lower point cloud heights, leading to a consistent downward trend in percentile height metrics and fractional cover. The magnitude and direction of these trends also varied depending on the vegetation type sampled (trees, shrubs or grasses), showing that the structure and composition of savanna vegetation can interact with the lidar signal and alter derived metrics. While there were statistically significant differences in metrics among acquisitions, the average differences were often on the order of a few centimetres or less, which shows great promise for future comparison studies. We discuss how these results apply in practice, explaining the potential trade‐offs of flying at higher altitudes and with alternate patterns. We highlight how flight and sensor parameters can be geared toward specific ecological applications and vegetation types, and we explore future opportunities for optimizing UAV‐lidar sampling designs in savannas. A cross‐section of a lidar point cloud for a single tree (left) from a savanna in the Satara region of Kruger National Park, South Africa (visualised with CloudCompare 2.11). Smoothed vertical profiles of fractional canopy cover per 10 cm height bin are plotted for the same tree. These profiles were derived from a series of airborne lidar data collected from 4 different flight altitudes (60 m, 100 m, 180 m, and 300 m above ground) with an unoccupied aerial vehicle (UAV). As flight altitude increases (left‐right), the canopy cover profiles change shape and shift downward, demonstrating that UAV fight and sensor parameters can have a significant impact on lidar measurements of vegetation structure.