MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The small molecule LOXL2 inhibitor SNT-5382 reduces cardiac fibrosis and achieves strong clinical target engagement
The small molecule LOXL2 inhibitor SNT-5382 reduces cardiac fibrosis and achieves strong clinical target engagement
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The small molecule LOXL2 inhibitor SNT-5382 reduces cardiac fibrosis and achieves strong clinical target engagement
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The small molecule LOXL2 inhibitor SNT-5382 reduces cardiac fibrosis and achieves strong clinical target engagement
The small molecule LOXL2 inhibitor SNT-5382 reduces cardiac fibrosis and achieves strong clinical target engagement

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The small molecule LOXL2 inhibitor SNT-5382 reduces cardiac fibrosis and achieves strong clinical target engagement
The small molecule LOXL2 inhibitor SNT-5382 reduces cardiac fibrosis and achieves strong clinical target engagement
Journal Article

The small molecule LOXL2 inhibitor SNT-5382 reduces cardiac fibrosis and achieves strong clinical target engagement

2025
Request Book From Autostore and Choose the Collection Method
Overview
Cardiac remodeling involves myocardial hypertrophy and fibrosis which impairs cardiac function and, ultimately, contributes to heart failure (HF) and mortality. Fibrosis largely develops due to excessive matrix deposition and lysyl oxidase(s)-dependent collagen cross-linking. In particular, lysyl oxidase-like 2 (LOXL2) has a critical role in disease progression, representing a promising therapeutic target and rationale for the development of novel, efficacious LOXL2 inhibitor(s). Herein, we describe the pre-clinical validation of a potent small molecule LOXL2 inhibitor as an anti-fibrotic agent, along with its clinical suitability, as high levels of target engagement were sustained in Phase 1 clinical trials while also being well tolerated. We show that LOXL2 concentration is increased in the plasma of patients with HF due to existing hypertension or aortic stenosis. Plasma LOXL2 concentration were correlated with the left ventricular mass index. A novel LOXL2 inhibitor, SNT-5382, was characterised, including in vitro and in vivo assessment of potency and mode of action, which showed beneficial drug-like properties. Preclinically, SNT-5382 reduced fibrosis and improved cardiac function in a myocardial infarction (MI) mouse model. Phase 1 clinical studies demonstrated a good safety and a PK profile capable of eliciting high and prolonged LOXL2 inhibition following repeated once daily oral dosing. Our findings underscore the pivotal role of LOXL2 in the development of HF. SNT-5382 exhibited potent anti-fibrotic efficacy in a MI model and sustained clinical target engagement. Trial registration : Australian New Zealand Clinical Trials Registry identifier: ACTRN12617001564347. Registered 21 November 2017- registered, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12617001564347