MbrlCatalogueTitleDetail

Do you wish to reserve the book?
YTHDC1‐dependent m6A modification modulated FOXM1 promotes glycolysis and tumor progression through CENPA in triple‐negative breast cancer
YTHDC1‐dependent m6A modification modulated FOXM1 promotes glycolysis and tumor progression through CENPA in triple‐negative breast cancer
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
YTHDC1‐dependent m6A modification modulated FOXM1 promotes glycolysis and tumor progression through CENPA in triple‐negative breast cancer
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
YTHDC1‐dependent m6A modification modulated FOXM1 promotes glycolysis and tumor progression through CENPA in triple‐negative breast cancer
YTHDC1‐dependent m6A modification modulated FOXM1 promotes glycolysis and tumor progression through CENPA in triple‐negative breast cancer

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
YTHDC1‐dependent m6A modification modulated FOXM1 promotes glycolysis and tumor progression through CENPA in triple‐negative breast cancer
YTHDC1‐dependent m6A modification modulated FOXM1 promotes glycolysis and tumor progression through CENPA in triple‐negative breast cancer
Journal Article

YTHDC1‐dependent m6A modification modulated FOXM1 promotes glycolysis and tumor progression through CENPA in triple‐negative breast cancer

2024
Request Book From Autostore and Choose the Collection Method
Overview
Triple‐negative breast cancer (TNBC) exhibits heightened aggressiveness compared with other breast cancer (BC) subtypes, with earlier relapse, a higher risk of distant metastasis, and a worse prognosis. Transcription factors play a pivotal role in various cancers. Here, we found that factor forkhead box M1 (FOXM1) expression was significantly higher in TNBC than in other BC subtypes and normal tissues. Combining the findings of Gene Ontology (GO) enrichment analysis and a series of experiments, we found that knockdown of the FOXM1 gene attenuated the ability of TNBC cells to proliferate and metastasize both in vivo and in vitro. In addition, Spearman's test showed that FOXM1 significantly correlated with glycolysis‐related genes, especially centromere protein A (CENPA) in datasets (GSE76250, GSE76124, GSE206912, and GSE103091). The effect of silencing FOXM1 on the inhibition of CENPA expression, TNBC proliferation, migration, and glycolysis could be recovered by overexpression of CENPA. According to MeRIP, the level of m6A modification on FOMX1 decreased in cells treated with cycloleucine (a m6A inhibitor) compared with that in the control group. The increase in FOXM1 expression caused by YTHDC1 overexpression could be reversed by the m6A inhibitor, which indicated that YTHDC1 enhanced FOXM1 expression depending on m6A modification. Therefore, we concluded that the YTHDC1‐m6A modification/FOXM1/CENPA axis plays an important role in TNBC progression and glycolysis. Using bioinformatics and in vivo and in vitro experiments, we identified that the YTHDC1‐dependent m6A/FOXM1/CENPA axis is involved in the regulation of glycolysis and the progression of TNBC. This discovery provides new insight into the molecular interactions driving TNBC and potential therapeutic targets for combating this aggressive cancer.