MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Hypoxia-induced epithelial-mesenchymal transition and fibrosis for the development of breast capsular contracture
Hypoxia-induced epithelial-mesenchymal transition and fibrosis for the development of breast capsular contracture
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Hypoxia-induced epithelial-mesenchymal transition and fibrosis for the development of breast capsular contracture
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Hypoxia-induced epithelial-mesenchymal transition and fibrosis for the development of breast capsular contracture
Hypoxia-induced epithelial-mesenchymal transition and fibrosis for the development of breast capsular contracture

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Hypoxia-induced epithelial-mesenchymal transition and fibrosis for the development of breast capsular contracture
Hypoxia-induced epithelial-mesenchymal transition and fibrosis for the development of breast capsular contracture
Journal Article

Hypoxia-induced epithelial-mesenchymal transition and fibrosis for the development of breast capsular contracture

2019
Request Book From Autostore and Choose the Collection Method
Overview
Fibrosis has been considered as a major cause of capsular contracture. Hypoxia has widely emerged as one of the driving factors for fibrotic diseases. The aim of this study was to examine the association between hypoxia-induced fibrosis and breast capsular contracture formation. Fibrosis, epithelial-mesenchymal transition (EMT), expression levels of hypoxia-inducible factor-1α (HIF-1α), vimentin, fibronectin, and matrix metalloproteinase-9 (MMP-9) in tissues from patients with capsular contracture were determined according to the Baker classification system. Normal breast skin cells in patients with capsular contracture after implant-based breast surgery and NIH3T3 mouse fibroblasts were cultured with cobalt chloride (CoCl 2 ) to mimic hypoxic conditions. Treatment responses were determined by detecting the expression of HIF-1α, vimentin, fibronectin, N-cadherin, snail, twist, occludin, MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and -2, as well as phosphorylated ERK. The expression levels of HIF-1α, vimentin, fibronectin, and fibrosis as well as EMT were positively correlated with the severity of capsular contracture. MMP-9 expression was negatively correlated the Baker score. Hypoxia up-regulated the expression of HIF-1α, vimentin, fibronectin, N-cadherin, snail, twist, TIMP-1 and -2, as well as phosphorylated ERK in normal breast skin cells and NIH3T3. Nonetheless, the expression levels of MMP-9 and occludin were down-regulated in response to CoCl 2 treatment. This study is the first to demonstrate the association of hypoxia-induced fibrosis and capsular contracture.