MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Label-free cell assays to determine compound uptake or drug action using MALDI-TOF mass spectrometry
Label-free cell assays to determine compound uptake or drug action using MALDI-TOF mass spectrometry
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Label-free cell assays to determine compound uptake or drug action using MALDI-TOF mass spectrometry
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Label-free cell assays to determine compound uptake or drug action using MALDI-TOF mass spectrometry
Label-free cell assays to determine compound uptake or drug action using MALDI-TOF mass spectrometry

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Label-free cell assays to determine compound uptake or drug action using MALDI-TOF mass spectrometry
Label-free cell assays to determine compound uptake or drug action using MALDI-TOF mass spectrometry
Journal Article

Label-free cell assays to determine compound uptake or drug action using MALDI-TOF mass spectrometry

2021
Request Book From Autostore and Choose the Collection Method
Overview
Cell-based assays for compound screening and profiling are fundamentally important in life sciences, chemical biology and pharmaceutical research. Most cell assays measure the amount of a single reporter molecule or cellular endpoint, and require the use of fluorescence or other labeled materials. Consequently, there is high demand for label-free technologies that enable multiple biomolecules or endpoints to be measured simultaneously. Here, we describe how to develop, optimize and validate MALDI-TOF mass spectrometry (MS) cell assays that can be used to measure cellular uptake of transporter substrates, to monitor cellular drug target engagement or to discover cellular drug-response markers. In uptake assays, intracellular accumulation of a transporter substrate and its inhibition by test compounds is measured. In drug response assays, changes to multiple cellular metabolites or to abundant posttranslational protein modifications are monitored as reporters of drug activity. We detail a ten-part optimization protocol with every part taking 1–2 d that leads to a final 2 d optimized procedure, which includes cell treatment, transfer, MALDI MS-specific sample preparation, quantification using stable-isotope-labeled standards, MALDI-TOF MS data acquisition, data processing and analysis. Key considerations for validation and automation of MALDI-TOF MS cell assays are outlined. Overall, label-free MS cell-based assays offer speed, sensitivity, accuracy and versatility in drug research. MALDI-TOF mass spectrometry (MS) can detect multiple compounds simultaneously. This protocol describes how to develop and optimize high-throughput, cell-based assays that use MALDI-TOF MS to detect drug uptake or biochemical markers of drug activity.