MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Topological identification and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA
Topological identification and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Topological identification and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Topological identification and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA
Topological identification and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Topological identification and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA
Topological identification and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA
Journal Article

Topological identification and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA

2023
Request Book From Autostore and Choose the Collection Method
Overview
Single-cell RNA sequencing provides high-throughput gene expression information to explore cellular heterogeneity at the individual cell level. A major challenge in characterizing high-throughput gene expression data arises from challenges related to dimensionality, and the prevalence of dropout events. To address these concerns, we develop a deep graph learning method, scMGCA, for single-cell data analysis. scMGCA is based on a graph-embedding autoencoder that simultaneously learns cell-cell topology representation and cluster assignments. We show that scMGCA is accurate and effective for cell segregation and batch effect correction, outperforming other state-of-the-art models across multiple platforms. In addition, we perform genomic interpretation on the key compressed transcriptomic space of the graph-embedding autoencoder to demonstrate the underlying gene regulation mechanism. We demonstrate that in a pancreatic ductal adenocarcinoma dataset, scMGCA successfully provides annotations on the specific cell types and reveals differential gene expression levels across multiple tumor-associated and cell signalling pathways. A major challenge in analyzing scRNA-seq data arises from challenges related to dimensionality and the prevalence of dropout events. Here the authors develop a deep graph learning method called scMGCA based on a graph-embedding autoencoder that simultaneously learns cell-cell topology representation and cluster assignments, outperforming other state-of-the-art models across multiple platforms.