MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments
Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments
Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments
Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments
Journal Article

Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments

2022
Request Book From Autostore and Choose the Collection Method
Overview
While hypoxia promotes carcinogenesis, tumour aggressiveness, metastasis, and resistance to oncological treatments, the impacts of hyperoxia on tumours are rarely explored because providing a long-lasting oxygen supply in vivo is a major challenge. Herein, we construct micro oxygen factories, namely, photosynthesis microcapsules (PMCs), by encapsulation of acquired cyanobacteria and upconversion nanoparticles in alginate microcapsules. This system enables a long-lasting oxygen supply through the conversion of external radiation into red-wavelength emissions for photosynthesis in cyanobacteria. PMC treatment suppresses the NF-kB pathway, HIF-1α production and cancer cell proliferation. Hyperoxic microenvironment created by an in vivo PMC implant inhibits hepatocarcinoma growth and metastasis and has synergistic effects together with anti-PD-1 in breast cancer. The engineering oxygen factories offer potential for tumour biology studies in hyperoxic microenvironments and inspire the exploration of oncological treatments. Tumour hypoxia is an important factor in tumorigenesis and cancer therapy. Here, the authors present a micro oxygenation factory, capable of providing an oxygen supply through photosynthesis, and demonstrate its utility in cancer therapy.