MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A novel fungal metal-dependent α-l-arabinofuranosidase of family 54 glycoside hydrolase shows expanded substrate specificity
A novel fungal metal-dependent α-l-arabinofuranosidase of family 54 glycoside hydrolase shows expanded substrate specificity
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A novel fungal metal-dependent α-l-arabinofuranosidase of family 54 glycoside hydrolase shows expanded substrate specificity
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A novel fungal metal-dependent α-l-arabinofuranosidase of family 54 glycoside hydrolase shows expanded substrate specificity
A novel fungal metal-dependent α-l-arabinofuranosidase of family 54 glycoside hydrolase shows expanded substrate specificity

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A novel fungal metal-dependent α-l-arabinofuranosidase of family 54 glycoside hydrolase shows expanded substrate specificity
A novel fungal metal-dependent α-l-arabinofuranosidase of family 54 glycoside hydrolase shows expanded substrate specificity
Journal Article

A novel fungal metal-dependent α-l-arabinofuranosidase of family 54 glycoside hydrolase shows expanded substrate specificity

2021
Request Book From Autostore and Choose the Collection Method
Overview
Trichoderma genus fungi present great potential for the production of carbohydrate-active enzymes (CAZYmes), including glycoside hydrolase (GH) family members. From a renewability perspective, CAZYmes can be biotechnologically exploited to convert plant biomass into free sugars for the production of advanced biofuels and other high-value chemicals. GH54 is an attractive enzyme family for biotechnological applications because many GH54 enzymes are bifunctional. Thus, GH54 enzymes are interesting targets in the search for new enzymes for use in industrial processes such as plant biomass conversion. Herein, a novel metal-dependent GH54 arabinofuranosidase (ThABF) from the cellulolytic fungus Trichoderma harzianum was identified and biochemically characterized. Initial in silico searches were performed to identify the GH54 sequence. Next, the gene was cloned and heterologously overexpressed in Escherichia coli . The recombinant protein was purified, and the enzyme’s biochemical and biophysical properties were assessed. GH54 members show wide functional diversity and specifically remove plant cell substitutions including arabinose and galactose in the presence of a metallic cofactor. Plant cell wall substitution has a major impact on lignocellulosic substrate conversion into high-value chemicals. These results expand the known functional diversity of the GH54 family, showing the potential of a novel arabinofuranosidase for plant biomass degradation.