MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer
Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer
Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer
Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer
Journal Article

Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer

2025
Request Book From Autostore and Choose the Collection Method
Overview
Self-supervised learning (SSL) automates the extraction and interpretation of histopathology features on unannotated hematoxylin-eosin-stained whole slide images (WSIs). We train an SSL Barlow Twins encoder on 435 colon adenocarcinoma WSIs from The Cancer Genome Atlas to extract features from small image patches (tiles). Leiden community detection groups tiles into histomorphological phenotype clusters (HPCs). HPC reproducibility and predictive ability for overall survival are confirmed in an independent clinical trial ( N  = 1213 WSIs). This unbiased atlas results in 47 HPCs displaying unique and shared clinically significant histomorphological traits, highlighting tissue type, quantity, and architecture, especially in the context of tumor stroma. Through in-depth analyses of these HPCs, including immune landscape and gene set enrichment analyses, and associations to clinical outcomes, we shine light on the factors influencing survival and responses to treatments of standard adjuvant chemotherapy and experimental therapies. Further exploration of HPCs may unveil additional insights and aid decision-making and personalized treatments for colon cancer patients. Histomorphological phenotype clustering (HPC) is a self-supervised machine learning methodology enabling automatic feature extraction from whole slide images (WSI) in pathology. Here, the authors demonstrate the utility of this approach in colon adenocarcinoma WSIs and investigate the links between the HPCs and patient outcomes.