MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data
Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data
Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data
Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data
Journal Article

Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data

2022
Request Book From Autostore and Choose the Collection Method
Overview
Identification of cell populations often relies on manual annotation of cell clusters using established marker genes. However, the selection of marker genes is a time-consuming process that may lead to sub-optimal annotations as the markers must be informative of both the individual cell clusters and various cell types present in the sample. Here, we developed a computational platform, ScType, which enables a fully-automated and ultra-fast cell-type identification based solely on a given scRNA-seq data, along with a comprehensive cell marker database as background information. Using six scRNA-seq datasets from various human and mouse tissues, we show how ScType provides unbiased and accurate cell type annotations by guaranteeing the specificity of positive and negative marker genes across cell clusters and cell types. We also demonstrate how ScType distinguishes between healthy and malignant cell populations, based on single-cell calling of single-nucleotide variants, making it a versatile tool for anticancer applications. The widely applicable method is deployed both as an interactive web-tool ( https://sctype.app ), and as an open-source R-package. Cell types are typically identified in single cell transcriptomic data by manual annotation of cell clusters using established marker genes. Here the authors present a fully-automated computational platform that can quickly and accurately distinguish between cell types.