MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Adaptation of prelimbic cortex mediated by IL-6/STAT3/Acp5 pathway contributes to the comorbidity of neuropathic pain and depression in rats
Adaptation of prelimbic cortex mediated by IL-6/STAT3/Acp5 pathway contributes to the comorbidity of neuropathic pain and depression in rats
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Adaptation of prelimbic cortex mediated by IL-6/STAT3/Acp5 pathway contributes to the comorbidity of neuropathic pain and depression in rats
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Adaptation of prelimbic cortex mediated by IL-6/STAT3/Acp5 pathway contributes to the comorbidity of neuropathic pain and depression in rats
Adaptation of prelimbic cortex mediated by IL-6/STAT3/Acp5 pathway contributes to the comorbidity of neuropathic pain and depression in rats

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Adaptation of prelimbic cortex mediated by IL-6/STAT3/Acp5 pathway contributes to the comorbidity of neuropathic pain and depression in rats
Adaptation of prelimbic cortex mediated by IL-6/STAT3/Acp5 pathway contributes to the comorbidity of neuropathic pain and depression in rats
Journal Article

Adaptation of prelimbic cortex mediated by IL-6/STAT3/Acp5 pathway contributes to the comorbidity of neuropathic pain and depression in rats

2022
Request Book From Autostore and Choose the Collection Method
Overview
Background The adaption of brain region is fundamental to the development and maintenance of nervous system disorders. The prelimbic cortex (PrL) participates in the affective components of the pain sensation. However, whether and how the adaptation of PrL contributes to the comorbidity of neuropathic pain and depression are unknown. Methods Using resting-state functional magnetic resonance imaging (rs-fMRI), genetic knockdown or overexpression, we systematically investigated the activity of PrL region in the pathogenesis of neuropathic pain/depression comorbid using the combined approaches of immunohistochemistry, electrophysiology, and behavior. Results The activity of PrL and the excitability of pyramidal neurons were decreased, and the osteoclastic tartrate-resistant acid phosphatase 5 (Acp5) expression in PrL neurons was upregulated following the acquisition of spared nerve injury (SNI)-induced comorbidity. Genetic knockdown of Acp5 in pyramidal neurons, but not parvalbumin (PV) neurons or somatostatin (SST) neurons, attenuated the decrease of spike number, depression-like behavior and mechanical allodynia in comorbidity rats. Overexpression of Acp5 in PrL pyramidal neurons decreased the spike number and induced the comorbid-like behavior in naïve rats. Moreover, the expression of interleukin-6 (IL-6), phosphorylated STAT3 (p-STAT3) and acetylated histone H3 (Ac-H3) were significantly increased following the acquisition of comorbidity in rats. Increased binding of STAT3 to the Acp5 gene promoter and the interaction between STAT3 and p300 enhanced acetylation of histone H3 and facilitated the transcription of Acp5 in PrL in the modeled rodents. Inhibition of IL-6/STAT3 pathway prevented the Acp5 upregulation and attenuated the comorbid-like behaviors in rats. Conclusions These data suggest that the adaptation of PrL mediated by IL-6/STAT3/Acp5 pathway contributed to the comorbidity of neuropathic pain/depression induced by SNI.