MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin
Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin
Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin
Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin
Journal Article

Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin

2016
Request Book From Autostore and Choose the Collection Method
Overview
The advent of super-resolution imaging (SRI) has created a need for optimized labelling strategies. We present a new method relying on fluorophore-conjugated monomeric streptavidin (mSA) to label membrane proteins carrying a short, enzymatically biotinylated tag, compatible with SRI techniques including uPAINT, STED and dSTORM. We demonstrate efficient and specific labelling of target proteins in confined intercellular and organotypic tissues, with reduced steric hindrance and no crosslinking compared with multivalent probes. We use mSA to decipher the dynamics and nanoscale organization of the synaptic adhesion molecules neurexin-1β, neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2) in a dual-colour configuration with GFP nanobody, and show that these proteins are diffusionally trapped at synapses where they form apposed trans -synaptic adhesive structures. Furthermore, Nlg1 is dynamic, disperse and sensitive to synaptic stimulation, whereas LRRTM2 is organized in compact and stable nanodomains. Thus, mSA is a versatile tool to image membrane proteins at high resolution in complex live environments, providing novel information about the nano-organization of biological structures. The advent of fluorescence-based super-resolution microscopy has created a need for labeling strategies relying on small probes that minimally perturb protein function. Here the authors describe a labeling method that reduces protein tag and label sizes, allowing for accurate protein targeting and measurements of protein dynamics in tight cellular spaces.