MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Spin current generation and relaxation in a quenched spin-orbit-coupled Bose-Einstein condensate
Spin current generation and relaxation in a quenched spin-orbit-coupled Bose-Einstein condensate
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Spin current generation and relaxation in a quenched spin-orbit-coupled Bose-Einstein condensate
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Spin current generation and relaxation in a quenched spin-orbit-coupled Bose-Einstein condensate
Spin current generation and relaxation in a quenched spin-orbit-coupled Bose-Einstein condensate

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Spin current generation and relaxation in a quenched spin-orbit-coupled Bose-Einstein condensate
Spin current generation and relaxation in a quenched spin-orbit-coupled Bose-Einstein condensate
Journal Article

Spin current generation and relaxation in a quenched spin-orbit-coupled Bose-Einstein condensate

2019
Request Book From Autostore and Choose the Collection Method
Overview
Understanding the effects of spin-orbit coupling (SOC) and many-body interactions on spin transport is important in condensed matter physics and spintronics. This topic has been intensively studied for spin carriers such as electrons but barely explored for charge-neutral bosonic quasiparticles (including their condensates), which hold promises for coherent spin transport over macroscopic distances. Here, we explore the effects of synthetic SOC (induced by optical Raman coupling) and atomic interactions on the spin transport in an atomic Bose-Einstein condensate (BEC), where the spin-dipole mode (SDM, actuated by quenching the Raman coupling) of two interacting spin components constitutes an alternating spin current. We experimentally observe that SOC significantly enhances the SDM damping while reducing the thermalization (the reduction of the condensate fraction). We also observe generation of BEC collective excitations such as shape oscillations. Our theory reveals that the SOC-modified interference, immiscibility, and interaction between the spin components can play crucial roles in spin transport. Spin-orbit coupling is interesting for fundamental understanding of spin transport and quench dynamics. Here the authors demonstrate spin-current generation and its relaxation in spin-orbit-coupled Bose-Einstein condensates of Rb atoms in different spin states.