Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Stress detection using deep neural networks
by
Li, Russell
, Liu, Zhandong
in
Accuracy
/ Algorithms
/ Artificial neural networks
/ Cardiac stress tests
/ Cardiovascular diseases
/ Care and treatment
/ Chest
/ Classification
/ Convolutional neural network
/ Data analysis
/ Datasets
/ Decision trees
/ Diabetes
/ Diabetes mellitus
/ Diagnosis
/ Discriminant analysis
/ Electrocardiography
/ Electromyography
/ Emotion classification
/ Emotions
/ Feature extraction
/ Hand
/ Health Informatics
/ Heart rate
/ Humans
/ Information Systems and Communication Service
/ Learning algorithms
/ Machine Learning
/ Management of Computing and Information Systems
/ Medicine
/ Medicine & Public Health
/ Methods
/ Multilayer perceptron
/ Multilayer perceptrons
/ Neural networks
/ Neural Networks, Computer
/ Physiology
/ Psychological factors
/ Psychological stress
/ Quality of Life
/ Robustness
/ Sensors
/ Skin
/ Standard deviation
/ Stress
/ Stress (Psychology)
/ Stress detection
/ Wrist
2020
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Stress detection using deep neural networks
by
Li, Russell
, Liu, Zhandong
in
Accuracy
/ Algorithms
/ Artificial neural networks
/ Cardiac stress tests
/ Cardiovascular diseases
/ Care and treatment
/ Chest
/ Classification
/ Convolutional neural network
/ Data analysis
/ Datasets
/ Decision trees
/ Diabetes
/ Diabetes mellitus
/ Diagnosis
/ Discriminant analysis
/ Electrocardiography
/ Electromyography
/ Emotion classification
/ Emotions
/ Feature extraction
/ Hand
/ Health Informatics
/ Heart rate
/ Humans
/ Information Systems and Communication Service
/ Learning algorithms
/ Machine Learning
/ Management of Computing and Information Systems
/ Medicine
/ Medicine & Public Health
/ Methods
/ Multilayer perceptron
/ Multilayer perceptrons
/ Neural networks
/ Neural Networks, Computer
/ Physiology
/ Psychological factors
/ Psychological stress
/ Quality of Life
/ Robustness
/ Sensors
/ Skin
/ Standard deviation
/ Stress
/ Stress (Psychology)
/ Stress detection
/ Wrist
2020
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Stress detection using deep neural networks
by
Li, Russell
, Liu, Zhandong
in
Accuracy
/ Algorithms
/ Artificial neural networks
/ Cardiac stress tests
/ Cardiovascular diseases
/ Care and treatment
/ Chest
/ Classification
/ Convolutional neural network
/ Data analysis
/ Datasets
/ Decision trees
/ Diabetes
/ Diabetes mellitus
/ Diagnosis
/ Discriminant analysis
/ Electrocardiography
/ Electromyography
/ Emotion classification
/ Emotions
/ Feature extraction
/ Hand
/ Health Informatics
/ Heart rate
/ Humans
/ Information Systems and Communication Service
/ Learning algorithms
/ Machine Learning
/ Management of Computing and Information Systems
/ Medicine
/ Medicine & Public Health
/ Methods
/ Multilayer perceptron
/ Multilayer perceptrons
/ Neural networks
/ Neural Networks, Computer
/ Physiology
/ Psychological factors
/ Psychological stress
/ Quality of Life
/ Robustness
/ Sensors
/ Skin
/ Standard deviation
/ Stress
/ Stress (Psychology)
/ Stress detection
/ Wrist
2020
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Journal Article
Stress detection using deep neural networks
2020
Request Book From Autostore
and Choose the Collection Method
Overview
Background
Over 70% of Americans regularly experience stress. Chronic stress results in cancer, cardiovascular disease, depression, and diabetes, and thus is deeply detrimental to physiological health and psychological wellbeing. Developing robust methods for the rapid and accurate detection of human stress is of paramount importance.
Methods
Prior research has shown that analyzing physiological signals is a reliable predictor of stress. Such signals are collected from sensors that are attached to the human body. Researchers have attempted to detect stress by using traditional machine learning methods to analyze physiological signals. Results, ranging between 50 and 90% accuracy, have been mixed. A limitation of traditional machine learning algorithms is the requirement for hand-crafted features. Accuracy decreases if features are misidentified. To address this deficiency, we developed two deep neural networks: a 1-dimensional (1D) convolutional neural network and a multilayer perceptron neural network. Deep neural networks do not require hand-crafted features but instead extract features from raw data through the layers of the neural networks. The deep neural networks analyzed physiological data collected from chest-worn and wrist-worn sensors to perform two tasks. We tailored each neural network to analyze data from either the chest-worn (1D convolutional neural network) or wrist-worn (multilayer perceptron neural network) sensors. The first task was binary classification for stress detection, in which the networks differentiated between stressed and non-stressed states. The second task was 3-class classification for emotion classification, in which the networks differentiated between baseline, stressed, and amused states. The networks were trained and tested on publicly available data collected in previous studies.
Results
The deep convolutional neural network achieved 99.80% and 99.55% accuracy rates for binary and 3-class classification, respectively. The deep multilayer perceptron neural network achieved 99.65% and 98.38% accuracy rates for binary and 3-class classification, respectively. The networks’ performance exhibited a significant improvement over past methods that analyzed physiological signals for both binary stress detection and 3-class emotion classification.
Conclusions
We demonstrated the potential of deep neural networks for developing robust, continuous, and noninvasive methods for stress detection and emotion classification, with the end goal of improving the quality of life.
Publisher
BioMed Central,BioMed Central Ltd,Springer Nature B.V,BMC
Subject
This website uses cookies to ensure you get the best experience on our website.