MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Large-scale analysis of de novo mutations identifies risk genes for female infertility characterized by oocyte and early embryo defects
Large-scale analysis of de novo mutations identifies risk genes for female infertility characterized by oocyte and early embryo defects
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Large-scale analysis of de novo mutations identifies risk genes for female infertility characterized by oocyte and early embryo defects
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Large-scale analysis of de novo mutations identifies risk genes for female infertility characterized by oocyte and early embryo defects
Large-scale analysis of de novo mutations identifies risk genes for female infertility characterized by oocyte and early embryo defects

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Large-scale analysis of de novo mutations identifies risk genes for female infertility characterized by oocyte and early embryo defects
Large-scale analysis of de novo mutations identifies risk genes for female infertility characterized by oocyte and early embryo defects
Journal Article

Large-scale analysis of de novo mutations identifies risk genes for female infertility characterized by oocyte and early embryo defects

2023
Request Book From Autostore and Choose the Collection Method
Overview
Background Oocyte maturation arrest and early embryonic arrest are important reproductive phenotypes resulting in female infertility and cause the recurrent failure of assisted reproductive technology (ART). However, the genetic etiologies of these female infertility-related phenotypes are poorly understood. Previous studies have mainly focused on inherited mutations based on large pedigrees or consanguineous patients. However, the role of de novo mutations (DNMs) in these phenotypes remains to be elucidated. Results To decipher the role of DNMs in ART failure and female infertility with oocyte and embryo defects, we explore the landscape of DNMs in 473 infertile parent–child trios and identify a set of 481 confident DNMs distributed in 474 genes. Gene ontology analysis reveals that the identified genes with DNMs are enriched in signaling pathways associated with female reproductive processes such as meiosis, embryonic development, and reproductive structure development. We perform functional assays on the effects of DNMs in a representative gene Tubulin Alpha 4a ( TUBA4A ), which shows the most significant enrichment of DNMs in the infertile parent–child trios. DNMs in TUBA4A disrupt the normal assembly of the microtubule network in HeLa cells, and microinjection of DNM TUBA4A cRNAs causes abnormalities in mouse oocyte maturation or embryo development, suggesting the pathogenic role of these DNMs in TUBA4A . Conclusions Our findings suggest novel genetic insights that DNMs contribute to female infertility with oocyte and embryo defects. This study also provides potential genetic markers and facilitates the genetic diagnosis of recurrent ART failure and female infertility.