MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Maintaining resting cardiac fibroblasts in vitro by disrupting mechanotransduction
Maintaining resting cardiac fibroblasts in vitro by disrupting mechanotransduction
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Maintaining resting cardiac fibroblasts in vitro by disrupting mechanotransduction
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Maintaining resting cardiac fibroblasts in vitro by disrupting mechanotransduction
Maintaining resting cardiac fibroblasts in vitro by disrupting mechanotransduction

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Maintaining resting cardiac fibroblasts in vitro by disrupting mechanotransduction
Maintaining resting cardiac fibroblasts in vitro by disrupting mechanotransduction
Journal Article

Maintaining resting cardiac fibroblasts in vitro by disrupting mechanotransduction

2020
Request Book From Autostore and Choose the Collection Method
Overview
Mechanical cues activate cardiac fibroblasts and induce differentiation into myofibroblasts, which are key steps for development of cardiac fibrosis. In vitro, the high stiffness of plastic culturing conditions will also induce these changes. It is therefore challenging to study resting cardiac fibroblasts and their activation in vitro. Here we investigate the extent to which disrupting mechanotransduction by culturing cardiac fibroblasts on soft hydrogels or in the presence of biochemical inhibitors can be used to maintain resting cardiac fibroblasts in vitro. Primary cardiac fibroblasts were isolated from adult mice and cultured on plastic or soft (4.5 kPa) polyacrylamide hydrogels. Myofibroblast marker gene expression and smooth muscle α-actin (SMA) fibers were quantified by real-time PCR and immunostaining, respectively. Myofibroblast differentiation was prevented on soft hydrogels for 9 days, but had occurred after 15 days on hydrogels. Transferring myofibroblasts to soft hydrogels reduced expression of myofibroblast-associated genes, albeit SMA fibers remained present. Inhibitors of transforming growth factor β receptor I (TGFβRI) and Rho-associated protein kinase (ROCK) were effective in preventing and reversing myofibroblast gene expression. SMA fibers were also reduced by blocker treatment although cell morphology did not change. Reversed cardiac fibroblasts maintained the ability to re-differentiate after the removal of blockers, suggesting that these are functionally similar to resting cardiac fibroblasts. However, actin alpha 2 smooth muscle (Acta2), lysyl oxidase (Lox) and periostin (Postn) were no longer sensitive to substrate stiffness, suggesting that transient treatment with mechanotransduction inhibitors changes the mechanosensitivity of some fibrosis-related genes. In summary, our results bring novel insight regarding the relative importance of specific mechanical signaling pathways in regulating different myofibroblast-associated genes. Furthermore, combining blocker treatment with the use of soft hydrogels has not been tested previously and revealed that only some genes remain mechano-sensitive after phenotypic reversion. This is important information for researchers using inhibitors to maintain a \"resting\" cardiac fibroblast phenotype in vitro as well as for our current understanding of mechanosensitive gene regulation.