MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability
Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability
Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability
Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability
Journal Article

Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability

2021
Request Book From Autostore and Choose the Collection Method
Overview
Background Ramie degumming is often carried out at high temperatures; therefore, thermostable alkaline pectate lyase (PL) is beneficial for ramie degumming for industrial applications. Thermostable PLs are usually obtained by exploring new enzymes or reconstructing existing enzyme by rational design. Here, we improved the thermostability of an alkaline pectate lyase (PelN) from Paenibacillus sp. 0602 with rational design and structure-based engineering. Results From 26 mutants, two mutants of G241A and G241V showed a higher thermostability compared with the wild-type PL. The mutant K93I showed increasing specific activity at 45 °C. Subsequently, we obtained combinational mutations (K93I/G241A) and found that their thermostability and specific activity improved simultaneously. The K93I/G241A mutant showed a half-life time of 15.9 min longer at 60 °C and a melting temperature of 1.6 °C higher than those of the wild PL. The optimum temperature decreased remarkably from 67.5 °C to 60 °C, accompanied by a 57% decrease in Km compared with the Km value of the wild-type strain. Finally, we found that the intramolecular interaction in PelN was the source in the improvements of molecular properties by comparing the model structures. Rational design of PelN was performed by stabilizing the α-helices with high conservation and increasing the stability of the overall structure of the protein. Two engineering strategies were applied by decreasing the mutation energy calculated by Discovery Studio and predicting the free energy in the process of protein folding by the PoPMuSiC algorithm. Conclusions The results demonstrated that the K93I/G241A mutant was more suitable for industrial production than the wild-type enzyme. Furthermore, the two forementioned strategies could be extended to reveal engineering of other kinds of industrial enzymes.