MbrlCatalogueTitleDetail

Do you wish to reserve the book?
All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals
All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals
All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals
All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals
Journal Article

All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals

2023
Request Book From Autostore and Choose the Collection Method
Overview
Excitable cells can be stimulated or inhibited by optogenetics. Since optogenetic actuation regimes are often static, neurons and circuits can quickly adapt, allowing perturbation, but not true control. Hence, we established an optogenetic voltage-clamp (OVC). The voltage-indicator QuasAr2 provides information for fast, closed-loop optical feedback to the bidirectional optogenetic actuator BiPOLES. Voltage-dependent fluorescence is held within tight margins, thus clamping the cell to distinct potentials. We established the OVC in muscles and neurons of Caenorhabditis elegans , and transferred it to rat hippocampal neurons in slice culture. Fluorescence signals were calibrated to electrically measured potentials, and wavelengths to currents, enabling to determine optical I/V-relationships. The OVC reports on homeostatically altered cellular physiology in mutants and on Ca 2+ -channel properties, and can dynamically clamp spiking in C. elegans . Combining non-invasive imaging with control capabilities of electrophysiology, the OVC facilitates high-throughput, contact-less electrophysiology in individual cells and paves the way for true optogenetic control in behaving animals. Optogenetic actuation regimes are often static, which allows perturbation, but not true control of neuronal activity. Here, the authors describe an all-optical method for bidirectional steering of membrane potential, in closed loop, in C. elegans muscles and neurons, and rat hippocampal slice culture. The ‘optogenetic voltage clamp’ uses two microbial rhodopsin actuators and the rhodopsin voltage indicator QuasAr.