MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Exploring the Effect of Sampling Frequency on Real-World Mobility, Sedentary Behaviour, Physical Activity and Sleep Outcomes Measured with Wearable Devices in Rheumatoid Arthritis: Feasibility, Usability and Practical Considerations
Exploring the Effect of Sampling Frequency on Real-World Mobility, Sedentary Behaviour, Physical Activity and Sleep Outcomes Measured with Wearable Devices in Rheumatoid Arthritis: Feasibility, Usability and Practical Considerations
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Exploring the Effect of Sampling Frequency on Real-World Mobility, Sedentary Behaviour, Physical Activity and Sleep Outcomes Measured with Wearable Devices in Rheumatoid Arthritis: Feasibility, Usability and Practical Considerations
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Exploring the Effect of Sampling Frequency on Real-World Mobility, Sedentary Behaviour, Physical Activity and Sleep Outcomes Measured with Wearable Devices in Rheumatoid Arthritis: Feasibility, Usability and Practical Considerations
Exploring the Effect of Sampling Frequency on Real-World Mobility, Sedentary Behaviour, Physical Activity and Sleep Outcomes Measured with Wearable Devices in Rheumatoid Arthritis: Feasibility, Usability and Practical Considerations

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Exploring the Effect of Sampling Frequency on Real-World Mobility, Sedentary Behaviour, Physical Activity and Sleep Outcomes Measured with Wearable Devices in Rheumatoid Arthritis: Feasibility, Usability and Practical Considerations
Exploring the Effect of Sampling Frequency on Real-World Mobility, Sedentary Behaviour, Physical Activity and Sleep Outcomes Measured with Wearable Devices in Rheumatoid Arthritis: Feasibility, Usability and Practical Considerations
Journal Article

Exploring the Effect of Sampling Frequency on Real-World Mobility, Sedentary Behaviour, Physical Activity and Sleep Outcomes Measured with Wearable Devices in Rheumatoid Arthritis: Feasibility, Usability and Practical Considerations

2025
Request Book From Autostore and Choose the Collection Method
Overview
Modern treat-to-target management of rheumatoid arthritis (RA) involves titration of drug therapy to achieve remission, requiring close monitoring of disease activity through frequent clinical assessments. Accelerometry offers a novel method for continuous remote monitoring of RA activity by capturing fluctuations in mobility, sedentary behaviours, physical activity and sleep patterns over prolonged periods without the expense, inconvenience and environmental impact of extra hospital visits. We aimed to (a) assess the feasibility, usability and acceptability of wearable devices in patients with active RA; (b) investigate the multivariate relationships within the dataset; and (c) explore the robustness of accelerometry outcomes to downsampling to facilitate future prolonged monitoring. Eleven people with active RA newly starting an arthritis drug completed clinical assessments at 4-week intervals for 12 weeks. Participants wore an Axivity AX6 wrist device (sampling frequency 100 Hz) for 7 days after each clinical assessment. Measures of macro gait (volume, pattern and variability), micro gait (pace, rhythm, variability, asymmetry and postural control of walking), sedentary behaviour (standing, sitting and lying) and physical activity (moderate to vigorous physical activity [MVPA], sustained inactive bouts [SIBs]) and sleep outcomes (sleep duration, wake up after sleep onset, number of awakenings) were recorded. Feasibility, usability and acceptability of wearable devices were assessed using Rabinovich’s questionnaire, principal component (PC) analysis was used to investigate the multivariate relationships within the dataset, and Bland–Altman plots (bias and Limits of Agreement) and Intraclass Correlation Coefficient (ICC) were used to test the robustness of outcomes sampled at 100 Hz versus downsampled at 50 Hz and 25 Hz. Wearable devices obtained high feasibility, usability and acceptability scores among participants. Macro gait outcomes and MVPA (first PC) and micro gait outcomes and number of SIBs (second PC) exhibited the strongest loadings, with these first two PCs accounting for 40% of the variance of the dataset. Furthermore, these device metrics were robust to downsampling, showing good to excellent agreements (ICC ≥ 0.75). We identified two main domains of mobility, physical activity and sleep outcomes of people with RA: micro gait outcomes plus MVPA and micro gait outcomes plus number of SIBs. Combined with the high usability and acceptability of wearable devices and the robustness of outcomes to downsampling, our real-world data supports the feasibility of accelerometry for prolonged remote monitoring of RA disease activity.

MBRLCatalogueRelatedBooks