MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Differential dynamics of cortical neuron dendritic trees revealed by long-term in vivo imaging in neonates
Differential dynamics of cortical neuron dendritic trees revealed by long-term in vivo imaging in neonates
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Differential dynamics of cortical neuron dendritic trees revealed by long-term in vivo imaging in neonates
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Differential dynamics of cortical neuron dendritic trees revealed by long-term in vivo imaging in neonates
Differential dynamics of cortical neuron dendritic trees revealed by long-term in vivo imaging in neonates

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Differential dynamics of cortical neuron dendritic trees revealed by long-term in vivo imaging in neonates
Differential dynamics of cortical neuron dendritic trees revealed by long-term in vivo imaging in neonates
Journal Article

Differential dynamics of cortical neuron dendritic trees revealed by long-term in vivo imaging in neonates

2018
Request Book From Autostore and Choose the Collection Method
Overview
Proper neuronal circuit function relies on precise dendritic projection, which is established through activity-dependent refinement during early postnatal development. Here we revealed dynamics of dendritic refinement in the mammalian brain by conducting long-term imaging of the neonatal mouse barrel cortex. By “retrospective” analyses, we identified “prospective” barrel-edge spiny stellate (SS) neurons in early neonates, which had an apical dendrite and primitive basal dendrites (BDs). These neurons retracted the apical dendrite gradually and established strong BD orientation bias through continuous “dendritic tree” turnover. A greater chance of survival was given to BD trees emerged in the barrel-center side, where thalamocortical axons (TCAs) cluster. When the spatial bias of TCA inputs to SS neurons was lost, BD tree turnover was suppressed, and most BD trees became stable and elaborated mildly. Thus, barrel-edge SS neurons could establish the characteristic BD projection pattern through differential dynamics of dendritic trees induced by spatially biased inputs. Layer 4 stellate neurons in barrel cortex have a characteristic dendritic pattern. Here, the authors conduct long-term imaging from postnatal day 3–6 to show that an orientation bias is established through dendritic tree turnover and selective elaboration, which may be induced by biased thalamocortical inputs.