MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis
Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis
Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis
Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis
Journal Article

Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis

2017
Request Book From Autostore and Choose the Collection Method
Overview
The receptor for advanced glycation end products (RAGE) is highly expressed in various cancers and is correlated with poorer outcome in breast and other cancers. Here we tested the role of targeting RAGE by multiple approaches in the tumor and tumor microenvironment, to inhibit the metastatic process. We first tested how RAGE impacts tumor cell-intrinsic mechanisms using either RAGE overexpression or knockdown with short hairpin RNAs (shRNAs). RAGE ectopic overexpression in breast cancer cells increased MEK-EMT (MEK-epithelial-to-mesenchymal transition) signaling, transwell invasion and soft agar colony formation, and in vivo promoted lung metastasis independent of tumor growth. RAGE knockdown with multiple independent shRNAs in breast cancer cells led to decreased transwell invasion and soft agar colony formation, without affecting proliferation. In vivo , targeting RAGE shRNA knockdown in human and mouse breast cancer cells, decreased orthotopic tumor growth, reduced tumor angiogenesis and recruitment of inflammatory cells, and markedly decreased metastasis to the lung and liver in multiple xenograft and syngeneic mouse models. To test the non-tumor cell microenvironment role of RAGE, we performed syngeneic studies with orthotopically injected breast cancer cells in wild-type and RAGE-knockout C57BL6 mice. RAGE-knockout mice displayed striking impairment of tumor cell growth compared with wild-type mice, along with decreased mitogen-activated protein kinase signaling, tumor angiogenesis and inflammatory cell recruitment. To test the combined inhibition of RAGE in both tumor cell-intrinsic and non-tumor cells of the microenvironment, we performed in vivo treatment of xenografted tumors with FPS-ZM1 (1 mg/kg, two times per week). Compared with vehicle, FPS-ZM1 inhibited primary tumor growth, inhibited tumor angiogenesis and inflammatory cell recruitment and, most importantly, prevented metastasis to the lung and liver. These data demonstrate that RAGE drives tumor progression and metastasis through distinct tumor cell-intrinsic and -extrinsic mechanisms, and may represent a novel and therapeutically viable approach for treating metastatic cancers.