MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Macrophage-derived glutamine boosts satellite cells and muscle regeneration
Macrophage-derived glutamine boosts satellite cells and muscle regeneration
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Macrophage-derived glutamine boosts satellite cells and muscle regeneration
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Macrophage-derived glutamine boosts satellite cells and muscle regeneration
Macrophage-derived glutamine boosts satellite cells and muscle regeneration

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Macrophage-derived glutamine boosts satellite cells and muscle regeneration
Macrophage-derived glutamine boosts satellite cells and muscle regeneration
Journal Article

Macrophage-derived glutamine boosts satellite cells and muscle regeneration

2020
Request Book From Autostore and Choose the Collection Method
Overview
Muscle regeneration is sustained by infiltrating macrophages and the consequent activation of satellite cells 1 – 4 . Macrophages and satellite cells communicate in different ways 1 – 5 , but their metabolic interplay has not been investigated. Here we show, in a mouse model, that muscle injuries and ageing are characterized by intra-tissue restrictions of glutamine. Low levels of glutamine endow macrophages with the metabolic ability to secrete glutamine via enhanced glutamine synthetase (GS) activity, at the expense of glutamine oxidation mediated by glutamate dehydrogenase 1 (GLUD1). Glud1 -knockout macrophages display constitutively high GS activity, which prevents glutamine shortages. The uptake of macrophage-derived glutamine by satellite cells through the glutamine transporter SLC1A5 activates mTOR and promotes the proliferation and differentiation of satellite cells. Consequently, macrophage-specific deletion or pharmacological inhibition of GLUD1 improves muscle regeneration and functional recovery in response to acute injury, ischaemia or ageing. Conversely, SLC1A5 blockade in satellite cells or GS inactivation in macrophages negatively affects satellite cell functions and muscle regeneration. These results highlight the metabolic crosstalk between satellite cells and macrophages, in which macrophage-derived glutamine sustains the functions of satellite cells. Thus, the targeting of GLUD1 may offer therapeutic opportunities for the regeneration of injured or aged muscles. Mouse models of muscle injuries and ageing characterized by low levels of intra-tissue glutamine are ameliorated by macrophage-specific deletion or systemic pharmacological inhibition of glutamate dehydrogenase 1, which results in constitutively high activity of glutamine synthetase.