MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Improved protocols for isolation of Mycobacterium ulcerans from clinical samples
Improved protocols for isolation of Mycobacterium ulcerans from clinical samples
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Improved protocols for isolation of Mycobacterium ulcerans from clinical samples
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Improved protocols for isolation of Mycobacterium ulcerans from clinical samples
Improved protocols for isolation of Mycobacterium ulcerans from clinical samples

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Improved protocols for isolation of Mycobacterium ulcerans from clinical samples
Improved protocols for isolation of Mycobacterium ulcerans from clinical samples
Journal Article

Improved protocols for isolation of Mycobacterium ulcerans from clinical samples

2025
Request Book From Autostore and Choose the Collection Method
Overview
Background The isolation and culture of Mycobacterium ulcerans (Mu) as a primary diagnostic modality for Buruli ulcer (BU) disease are limiting due to their low sensitivity and slow-growing nature. M. ulcerans cultures can also be overgrown with other bacteria and fungi. Culture, however, remains an important tool for the study of persisting viable M. ulcerans , drug susceptibility tests, and other molecular assays to improve management of the disease. The challenge of contamination with other fast-growing bacteria necessitates decontamination of clinical samples prior to culturing, but current methods may be too harsh, resulting in low yields of M. ulcerans . We aimed to evaluate a Tika-Kic decontamination process for M. ulcerans that uses supplements to stimulate M. ulcerans growth to improve recovery. Methods Swab and Fine Needle Aspirate (FNA) samples were collected from 21 individuals with confirmed BU at baseline (week 0) and weeks 2 and 4 after initiating antibiotic treatment. Samples were decontaminated with Tika-Kic decontamination medium and the modified Petroff (NaOH) methods then inoculated each into Mycobacterium Growth Indicator Tube (MGIT) or Löwenstein Jensen (LJ) medium. Time to growth detection and confirmation by qPCR as well as the proportion of positive cultures for all three methods and the proportion of positive cultures for all three time points were documented. Common contaminating bacteria were also isolated and identified. Results The proportion of M. ulcerans positive cultures obtained was higher for Tika-MGIT samples [14/43 (32%)] compared to Petroff-MGIT samples [10/43 (23%)] and Petroff-LJ samples [8/43 (19%)]. Baseline samples had a higher isolate proportion [17 (53%)] compared to samples collected after treatment initiation [9 (28%) for week 2 and 6 (19%) for week 4]. Contaminating bacteria isolated include Burkholderia cepacia , Pseudomonas aeruginosa , Pasteurella pneumotropica , Proteus mirabilis , Morganella morganii , Staphylococcus aureus and Enterococcus . Conclusion Our study shows an advantage for culturing Mycobacterium ulcerans from clinical samples using the Tika-Kic decontamination and growth medium. Further research is needed to refine sample processing to improve M. ulcerans recovery.