MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Relationship between brain iron dynamics and blood-brain barrier function during childhood: a quantitative magnetic resonance imaging study
Relationship between brain iron dynamics and blood-brain barrier function during childhood: a quantitative magnetic resonance imaging study
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Relationship between brain iron dynamics and blood-brain barrier function during childhood: a quantitative magnetic resonance imaging study
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Relationship between brain iron dynamics and blood-brain barrier function during childhood: a quantitative magnetic resonance imaging study
Relationship between brain iron dynamics and blood-brain barrier function during childhood: a quantitative magnetic resonance imaging study

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Relationship between brain iron dynamics and blood-brain barrier function during childhood: a quantitative magnetic resonance imaging study
Relationship between brain iron dynamics and blood-brain barrier function during childhood: a quantitative magnetic resonance imaging study
Journal Article

Relationship between brain iron dynamics and blood-brain barrier function during childhood: a quantitative magnetic resonance imaging study

2023
Request Book From Autostore and Choose the Collection Method
Overview
Background Mounting evidence suggests that the blood-brain barrier (BBB) plays an important role in the regulation of brain iron homeostasis in normal brain development, but these imaging profiles remain to be elucidated. We aimed to establish a relationship between brain iron dynamics and BBB function during childhood using a combined quantitative magnetic resonance imaging (MRI) to depict both physiological systems along developmental trajectories. Methods In this single-center prospective study, consecutive outpatients, 2–180 months of age, who underwent brain MRI (3.0-T scanner; Ingenia; Philips) between January 2020 and January 2021, were included. Children with histories of preterm birth or birth defects, abnormalities on MRI, and diagnoses that included neurological diseases during follow-up examinations through December 2022 were excluded. In addition to clinical MRI, quantitative susceptibility mapping (QSM; iron deposition measure) and diffusion-prepared pseudo-continuous arterial spin labeling (DP-pCASL; BBB function measure) were acquired. Atlas-based analyses for QSM and DP-pCASL were performed to investigate developmental trajectories of regional brain iron deposition and BBB function and their relationships. Results A total of 78 children (mean age, 73.8 months ± 61.5 [SD]; 43 boys) were evaluated. Rapid magnetic susceptibility progression in the brain (Δsusceptibility value) was observed during the first two years (globus pallidus, 1.26 ± 0.18 [× 10 − 3 ppm/month]; substantia nigra, 0.68 ± 0.16; thalamus, 0.15 ± 0.04). The scattergram between the Δsusceptibility value and the water exchange rate across the BBB ( k w ) divided by the cerebral blood flow was well fitted to the sigmoidal curve model, whose inflection point differed among each deep gray-matter nucleus (globus pallidus, 2.96–3.03 [mL/100 g] −1 ; substantia nigra, 3.12–3.15; thalamus, 3.64–3.67) in accordance with the regional heterogeneity of brain iron accumulation. Conclusions The combined quantitative MRI study of QSM and DP-pCASL for pediatric brains demonstrated the relationship between brain iron dynamics and BBB function during childhood. Trial registration UMIN Clinical Trials Registry identifier: UMIN000039047, registered January 6, 2020.