MbrlCatalogueTitleDetail

Do you wish to reserve the book?
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
Journal Article

In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes

2012
Request Book From Autostore and Choose the Collection Method
Overview
The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported previously that cardiac fibroblasts, which represent 50% of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here we use genetic lineage tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became binucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast-activating peptide, thymosin β4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes. Previous work has shown that a combination of three transcription factors can directly reprogram cardiac fibroblasts into cardiomyocyte-like cell in vitro ; now, the same authors demonstrate in vivo reprogramming of cardiac fibroblasts into induced cardiomyocytes. Heart-tissue regeneration in mice Having shown previously that a combination of three transcription factors can directly reprogram cardiac fibroblasts to cardiomyocyte-like cells — the cells that drive the heartbeat — in vitro , Deepak Srivastava and colleagues now take this approach in vivo . Using a retrovirus to deliver the transcription factors directly to the hearts of adult mice, they demonstrate the conversion of non-myocytes to induced cardiomyocytes. Heart function improved and the area of damaged tissue shrank. Delivery of the multifunctional peptide thymosin β4 — which activates cardiac fibroblasts — along with the cardiac reprogramming factors resulted in further reduction in scar area and improvement in cardiac function.
Publisher
Nature Publishing Group UK,Nature Publishing Group