MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Resistance of the murine cornea to bacterial colonization during experimental dry eye
Resistance of the murine cornea to bacterial colonization during experimental dry eye
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Resistance of the murine cornea to bacterial colonization during experimental dry eye
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Resistance of the murine cornea to bacterial colonization during experimental dry eye
Resistance of the murine cornea to bacterial colonization during experimental dry eye

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Resistance of the murine cornea to bacterial colonization during experimental dry eye
Resistance of the murine cornea to bacterial colonization during experimental dry eye
Journal Article

Resistance of the murine cornea to bacterial colonization during experimental dry eye

2020
Request Book From Autostore and Choose the Collection Method
Overview
The healthy cornea is remarkably resistant to infection, quickly clearing deliberately inoculated bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus. Contrasting with the adjacent conjunctiva and other body surfaces, it also lacks a resident viable bacterial microbiome. Corneal resistance to microbes depends on intrinsic defenses involving tear fluid and the corneal epithelium. Dry eye, an ocular surface disease associated with discomfort and inflammation, can alter tear fluid composition and volume, and impact epithelial integrity. We previously showed that experimentally-induced dry eye (EDE) in mice does not increase corneal susceptibility to P. aeruginosa infection. Here, we explored if EDE alters corneal resistance to bacterial colonization. EDE was established in mice using scopolamine injections and dehumidified air-flow, and verified by phenol-red thread testing after 5 and 10 days. As expected, EDE corneas showed increased fluorescein staining versus controls consistent with compromised epithelial barrier function. Confocal imaging using mT/mG knock-in mice with red-fluorescent membranes revealed no other obvious morphological differences between EDE corneas and controls for epithelium, stroma, and endothelium. EDE corneas were imaged ex vivo and compared to controls after alkyne-functionalized D-alanine labeling of metabolically-active colonizing bacteria, or by FISH using a universal 16S rRNA gene probe. Both methods revealed very few viable bacteria on EDE corneas after 5 or 10 days (median of 0, upper quartile of ≤ 1 bacteria per field of view for each group [9-12 eyes per group]) similar to control corneas. Furthermore, there was no obvious difference in abundance of conjunctival bacteria, which included previously reported filamentous forms. Thus, despite reduced tear flow and apparent compromise to corneal barrier function (fluorescein staining), EDE murine corneas continue to resist bacterial colonization and maintain the absence of a resident viable bacterial microbiome.