MbrlCatalogueTitleDetail

Do you wish to reserve the book?
MRI-based deep learning and radiomics pipeline for myxoid liposarcoma: a feasibility study in a rare sarcoma
MRI-based deep learning and radiomics pipeline for myxoid liposarcoma: a feasibility study in a rare sarcoma
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
MRI-based deep learning and radiomics pipeline for myxoid liposarcoma: a feasibility study in a rare sarcoma
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
MRI-based deep learning and radiomics pipeline for myxoid liposarcoma: a feasibility study in a rare sarcoma
MRI-based deep learning and radiomics pipeline for myxoid liposarcoma: a feasibility study in a rare sarcoma

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
MRI-based deep learning and radiomics pipeline for myxoid liposarcoma: a feasibility study in a rare sarcoma
MRI-based deep learning and radiomics pipeline for myxoid liposarcoma: a feasibility study in a rare sarcoma
Journal Article

MRI-based deep learning and radiomics pipeline for myxoid liposarcoma: a feasibility study in a rare sarcoma

2025
Request Book From Autostore and Choose the Collection Method
Overview
Myxoid liposarcoma (MLPS) is a rare soft tissue sarcoma characterized by histopathological variability, which poses challenges for accurate grading and treatment planning. This study evaluated the feasibility of an automated MRI-based pipeline that combines deep learning and radiomics for non-invasive tumor assessment. In a retrospective multicenter cohort of 48 patients with histologically confirmed MLPS, a 3D U-Net convolutional neural network was trained to perform automatic tumor segmentation on axial T2-weighted MR images. Radiomics features were subsequently extracted from the segmented volumes and used to train a Random Forest classifier for predicting tumor grade, defined by centralized histopathological review according to WHO criteria. The segmentation model achieved a median Dice similarity coefficient of 0.892. The radiomics-based grading classifier reached a mean area under the curve of 0.745, with an F1-score of 0.729 and a balanced accuracy of 0.723 in distinguishing high-grade from low-grade tumors. Most classification errors occurred in borderline or histologically heterogeneous cases. These findings suggest that automated segmentation and radiomics analysis may offer valuable support for MLPS grading and complement histopathology, particularly in diagnostically complex cases. Further prospective validation in larger cohorts is warranted.