MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Mesoporous silica nanoparticle-encapsulated Bifidobacterium attenuates brain Aβ burden and improves olfactory dysfunction of APP/PS1 mice by nasal delivery
Mesoporous silica nanoparticle-encapsulated Bifidobacterium attenuates brain Aβ burden and improves olfactory dysfunction of APP/PS1 mice by nasal delivery
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Mesoporous silica nanoparticle-encapsulated Bifidobacterium attenuates brain Aβ burden and improves olfactory dysfunction of APP/PS1 mice by nasal delivery
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Mesoporous silica nanoparticle-encapsulated Bifidobacterium attenuates brain Aβ burden and improves olfactory dysfunction of APP/PS1 mice by nasal delivery
Mesoporous silica nanoparticle-encapsulated Bifidobacterium attenuates brain Aβ burden and improves olfactory dysfunction of APP/PS1 mice by nasal delivery

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Mesoporous silica nanoparticle-encapsulated Bifidobacterium attenuates brain Aβ burden and improves olfactory dysfunction of APP/PS1 mice by nasal delivery
Mesoporous silica nanoparticle-encapsulated Bifidobacterium attenuates brain Aβ burden and improves olfactory dysfunction of APP/PS1 mice by nasal delivery
Journal Article

Mesoporous silica nanoparticle-encapsulated Bifidobacterium attenuates brain Aβ burden and improves olfactory dysfunction of APP/PS1 mice by nasal delivery

2022
Request Book From Autostore and Choose the Collection Method
Overview
Background Dysbiosis or imbalance of gut microbiota in Alzheimer's disease (AD) affects the production of short-chain fatty acids (SCFAs), whereas exogenous SCFAs supplementation exacerbates brain Aβ burden in APP/PS1 mice. Bifidobacterium is the main producer of SCFAs in the gut flora, but oral administration of Bifidobacterium is ineffective due to strong acids and bile salts in the gastrointestinal tract. Therefore, regulating the levels of SCFAs in the gut is of great significance for AD treatment. Methods We investigated the feasibility of intranasal delivery of MSNs- Bifidobacterium (MSNs-Bi) to the gut and their effect on behavior and brain pathology in APP/PS1 mice. Results Mesoporous silica nanospheres (MSNs) were efficiently immobilized on the surface of Bifidobacterium . After intranasal administration, fluorescence imaging of MSNs-Bi in the abdominal cavity and gastrointestinal tract revealed that intranasally delivered MSNs-Bi could be transported through the brain to the peripheral intestine. Intranasal administration of MSNs-Bi not only inhibited intestinal inflammation and reduced brain Aβ burden but also improved olfactory sensitivity in APP/PS1 mice. Conclusions These findings suggested that restoring the balance of the gut microbiome contributes to ameliorating cognitive impairment in AD, and that intranasal administration of MSNs-Bi may be an effective therapeutic strategy for the prevention of AD and intestinal disease.